Note on Problem 4.4.10c

Daniel McLaury

April 2, 2013

I've looked over the textbook publisher's provided solution to problem 4.4.10c from the text, and it looks like they basically just want you to do a whole lot of algebra. Recall that we're trying to optimize the function A = xy subject to the constraint

$$2x + y + \sqrt{x^2 + y^2} = 200.$$

We'd like to solve the constraint equation for either x or y so that we can plug one into our expression for A and make it into a function of one variable. We're eventually going to have to square both sides, so let's rearrange things to minimize the resulting mess:

$$2x + y = 200 - \sqrt{x^2 + y^2}$$

(That step wasn't strictly necessary, but if you try leaving it out you'll appreciate how much work it saves.) Okay, now it's time to do some work:

$$(2x+y)^2 = (200 - \sqrt{x^2 + y^2})^2$$
$$4x^2 + 4xy + y^2 = 40000 - 400\sqrt{x^2 + y^2} + x^2 + y^2$$

Simplify:

$$3x^2 + 4xy + 400\sqrt{x^2 + y^2} = 40000.$$

Now go back to the original constraint equation $2x + y + \sqrt{x^2 + y^2} = 200$, which I'll rewrite as $\sqrt{x^2 + y^2} = 200 - 2x - y$. We can plug this into the equation above, giving

$$3x^2 + 4xy + 400(200 - 2x - y) = 40000,$$

and from here it's not too hard to solve for y. You should be able to take things from here.